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Abstract 

Winter is a formidable challenge for ectotherms that inhabit temperate climates. The extent to which winter conditions drive rapid adaptation, 
and separately, how selection from novel stressors affects adaptation to winter, remain poorly understood. Here, we use replicate populations of 
Drosophila melanogaster in a field experiment to test (i) whether winter conditions drive rapid adaptation and (ii) for trade-offs between insecticide 
resistance and overwintering survival. Following a longitudinal field experiment investigating the evolution of insecticide resistance, we tracked 
subsequent evolution during an overwintering period. In unexposed control populations, we detected parallel evolutionary shifts indicative of 
adaptation to winter conditions in multiple traits, including body size and fecundity. Additionally, populations that had evolved insecticide resis- 
tance during the growing season were more likely to go extinct than control populations. Further, both control and resistant populations showed 
patterns of lower resistance following the winter period, suggestive of a trade-off between overwintering success and insecticide resistance. 
Rapid evolutionary responses to winter conditions, and potential costs of resist ance, provide import ant context for understanding overwintering 
performance in temperate insects with implications for pest management and ecosystem services. 
Keywords: overwintering, adaptation, Drosophila , insecticide resistance, trade-offs 

I

R  

v  

(  

h  

d  

a  

R  

f  

i  

r  

H  

t  

o
2  

w  

c  

a  

t  

l  

t  

o  

i  

t  

(

2  

t
 

d  

i  

l  

a  

a  

m  

a  

a  

e  

s  

O  

a  

g  

C  

s  

&  

g  

t  

p
 

o  

a  

R
A
©
d
n
r
l

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/article/80/1/56/8280391 by guest on 03 February 2026
ntroduction 

apid adaptation is critical to organismal responses to en-
ironmental change and the maintenance of biodiversity
 Exposito-Alonso et al., 2022 ; Urban et al., 2016 ). There
as been considerable work to understand the ecological
rivers of rapid adaptation, including biotic factors such
s predation, competition, and mutualism ( Li et al., 2021 ;
eznick & Endler, 1982 ; Schluter, 2000 ). Similarly, abiotic

actors, including variation in temperature, have been stud-
ed as drivers of rapid adaptation with direct implications for
esponses to climate change ( Bradshaw & Holzhapfl, 2010 ;
uey et al., 2021 ; Radchuk et al., 2019 ). In terrestrial ec-

otherms, there is extensive study on the ecology and physi-
logical challenges associated with winter ( Denlinger & Lee,
010 ; Marchand, 1987 ; Sinclair et al., 2003 ), but the role of
inter conditions in driving rapid adaptation has received

omparatively little attention (but see Campbell-Staton et
l., 2017 ; Marshall et al., 2020 ; Williams et al., 2015 ). Fur-
her, there are even fewer studies with sufficient population-
evel replication to detect parallel changes indicative of adap-
ation to winter conditions. Although there is clear evidence
f ecological and demographic effects of winter conditions,

ncluding population declines and life-history trade-offs be-
ween winter stress tolerance and summer reproduction
 Boulétreau-merle & Fouillet, 2002 ; Marshall & Sinclair,
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The fate of overwintering ectotherm populations is largely
ependent on both physiology and demography. The phys-

ological mechanisms enabling ectotherms to survive chal-
enging winter conditions are well-documented ( Sinclair et
l., 2003 ; Teets et al., 2023 ; Toxopeus & Sinclair, 2018 ). In
ddition to putatively adaptive physiological responses, for
ultivoltine species, population size and number of gener-

tions per year are strongly influenced by seasonal fluctu-
tions in temperature ( Altermatt, 2010 ; Roff, 1980 ; Shpak
t al., 2010 ; Tauber & Tauber, 1981 ). These demographic
hifts are important for ecological interactions ( Markow &
’Grady, 2008 ; Parmesan, 2006 ; Thackeray et al., 2016 ) but

lso for the capacity for rapid adaptation, because they alter
enetic diversity of populations ( Barrett & Schluter, 2008 ;
rozier & Dwyer, 2006 ). Across winter, populations can be

ubject to severe bottlenecks ( Chen et al., 2006 ; Kinnison
 Hairston, 2007 ; Lawton et al., 2022 ) as both demo-

raphic effects of genetic drift and the prevalence of adap-
ive physiological traits likely play a role in overwintering
ersistence. 
There is evidence of physiological responses to co-

ccurrence of low temperature and natural stressors such
s desiccation or pathogen exposure ( Le Bourg et al., 2009 ;
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reviewed in Sinclair et al., 2013 ; Zhang et al., 2011 ).
However, how the emergence of novel, strong, directional se- 
lective agents—such as those imposed anthropogenically—
interacts with natural stressors to shape ecological and evo- 
lutionary outcomes (e.g., insecticide resistance and low tem- 
perature) is less clear ( ffrench-Constant & Bass, 2017 ; Kliot 
& Ghanim, 2012 ). For example, there could be positive cor- 
relational selection and genetic covariance between insecti- 
cide resistance and overwintering survival ( Lande & Arnold,
1983 ; Service & Rose, 1985 ; Sinervo & Svensson, 2002 ).
Alternatively, there could be antagonism of insecticide resis- 
tance and overwintering rendering resistant populations less 
likely to survive the overwintering period ( McKenzie, 1994 ; 
McKenzie et al., 1990 ), possibly due to pleiotropy and/or 
fitness trade-offs ( Crow, 1957 ; Roush & McKenzie, 1987 ).
Any correlations are important considerations for agricul- 
ture, as there is a need to understand the mechanisms that 
facilitate or constrain insecticide resistance evolution ( Baker 
et al., 2007 ; Sparks et al., 2012 ). 

The common fruit fly ( Drosophila melanogaster , Meigen 

1830) makes an excellent system to study natural selec- 
tion across winter. Beyond the exceptional molecular and 

population genetic tools and amenability as a model or- 
ganism, D. melanogaster is among the species most studied 

in overwintering contexts including responses to low tem- 
perature ( Hoffmann et al., 2003a ; MacMillan & Sinclair,
2011 ; Overgaard et al., 2014 ; Rako & Hoffman, 2006 ; 
Schmidt et al., 2005 ). Despite a tropical ancestral origin,
local populations of D. melanogaster can overwinter even 

at high latitudes, though they may use human dwellings 
or compost piles as overwintering refugia ( Ives, 1970 ).
Mortality in winter can exceed 90%, though field survival 
data are scarce ( Ives, 1970 ; Izquierdo, 1991 ; Mitrovski & 

Hoffman, 2001 ; Nunez et al., 2024 ). Spatial patterns of 
genomic variation suggest that high-latitude populations 
exhibit patterns of local adaptation and maintain rela- 
tively high effective population sizes overwinter ( Cogni et 
al., 2015 ; Collett & Jarman, 2001 ; Ives, 1970 ; Machado 

et al., 2021 ). Thus, it is uncertain how evolution across 
winter allows D. melanogaster to maintain genetic varia- 
tion and expand successfully in spring despite population 

bottlenecks. 
Low temperature responses of flies show patterns of lat- 

itudinal variation in putative winter adaptations ( Gibert et 
al., 2001 ; Hoffman et al., 2003b ; Kellerman et al., 2012 ; 
Overgaard et al., 2014 ). These include traits for maintain- 
ing homeostasis under subzero conditions ( Denlinger & Lee,
2010 ; Hoffman et al., 2003a ; Sinclair et al., 2003 ; Teets et 
al., 2023 ), higher reproductive diapause incidence ( Collett & 

Jarman, 2001 ; Schmidt et al., 2005 ), greater stress tolerance 
( Hoffman, 2010 ; MacMillan & Sinclair, 2011 ) due to life- 
history allocation trade-offs ( Stearns, 1998 ), and larger body 
size based on laboratory and field studies ( Angilletta, 2009 ; 
James et al., 1997 ; Partridge et al., 1994 ). Fall fly populations 
exhibit phenotypic ( Behrman et al., 2015 ) and genomic sig- 
natures associated with summer selection ( Bergland et al.,
2014 ). Given that insecticide treatments are not commonly 
applied in winter, insecticide-resistant fall populations that 
overwinter as adults would face selective pressure from low 

temperatures while potentially incurring costs for carrying 
resistance ( McKenzie, 1994 ; Roush & McKenzie, 1987 ).
This could mean that resistant alleles decline in frequency 
4  
cross winter, an important factor for pest population con- 
rol measures. 

Assessment of rapid evolutionary adaptation and poten- 
ial tradeoffs requires replicate populations that undergo se- 
ection in parallel; however, such studies are often carried out
n controlled laboratory conditions (but see Hoffman et al.,
003a ; Sgrò & Hoffman, 1998 ). Here, we use a field exper-

ment to assess both the magnitude of overwintering adap- 
ation and the potential for trade-offs or covariation with 

daptation of insecticide resistance. Specifically we ask the 
ollowing questions: (1) Does an overwintering period drive 
daptation as measured by parallel genetic change across 
opulations? (2) Is there a trade-off between selection dur- 

ng the overwintering period and prior selection for insec- 
icide resistance? We hypothesized that strong overwinter 
ortality drives adaptation for greater overwintering per- 

ormance ( Izquierdo, 1991 ; Mitrovski & Hoffman, 2001 ).
herefore, we predicted that flies that successfully overwin- 

er would evolve greater body size, reduced fecundity, and 

reater starvation tolerance. For our second question, we 
efine a trade-off as the observed negative association be- 
ween evolved resistance and phenotypic measures including 
urvival: a broader definition of the term “trade-off” that de- 
cribes the outcomes from rather than the mechanistic causes 
f a trade-off ( Garland et al., 2022 ). We expected that over-
intering survival would negatively covary with the prior 

volution of resistance to an insecticide ( McKenzie, 1994 ; 
iyo et al., 2000 ). We predicted that overwintering selec- 

ion would reduce insecticide resistance and, in turn, that re-
istant populations would have lower survival and reduced 

erformance of cold tolerance traits. 
Replicated field experiments can feature environmental 

onditions that closely resemble those found in nature. They 
lso allow for larger population sizes than is typically fea-
ible in laboratory evolution experiments, increasing evolu- 
ionary realism. In this vein, we established D. melanogaster 
opulations into 40 replicated outdoor mesocosms in the 
ummer and tested for parallel phenotypic evolution across 
ndependent populations. With a subset of these original 
opulations, we then used repeated common garden rearing 
ollowing an overwintering period to test whether overwin- 
ering drove adaptation and for any negative correlation be- 
ween insecticide resistance and overwintering performance.

aterials and methods 

ultigenerational experiment and fly populations 

e tested fly populations as part of a multigenerational 
election experiment following previously described pro- 
ocols outlined in Rudman et al. (2022) . Drosophila 
elanogaster populations were founded from 100 DGRP 

ines ( Drosophila Genetic Reference Panel; Mackay et al.,
012 ) with 5 males and 10 females from each line placed

nto a population cage. This “hybrid swarm” population 

as allowed to mate, facilitating recombination, and grow 

t density-controlled conditions for nine generations prior 
o release outdoors. This breeding design decreases linkage 
isequilibrium through recombination of the founder haplo- 
ypes ( Weller et al., 2021 ). Populations were reared for ap-
roximately nine generations in outdoor mesocosms located 

5.729 N, −122.633 W (from here on “orchard”) from July
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7 until October 28, 2023. Throughout the experiment, all
opulations were fed a modified Bloomington recipe media.
Fly populations included 10 cages fed control media (from

ere on “control” populations with an approximate aver-
ge population size of 43,000 flies across the season) and
0 populations fed exclusively media treated with a 0.0375
g L−1 concentration of the organic insecticide spinosad

Entrust; Dow AgroSciences, Indianapolis, IN, USA) (av-
rage seasonal population of 7,000 flies). This concentra-
ion corresponds with the lethal dose at which 50% of
ies saw mortality based on dose–response assays conducted
n founder flies under standardized laboratory conditions
see supplementary information in Shahmohamadloo et al.,
025 ). Spinosad is a widely used insecticide for fruit crops
nd is applied prior to and during fruit ripening ( Scott et
l., 2024 ). Spinosad targets nicotinic acetylcholine neuronal
embrane receptors (nAChR), leading to neuronal overex-

itation and larval mortality ( Martelli et al., 2022 ; Perry
t al., 2007 ; Salgado, 1998 ). Five of 10 insecticide-exposed
opulations went extinct during the growing season. Five
ersisted—possibly via evolutionary rescue through the evo-

ution of spinosad resistance from standing genetic varia-
ion ( Perry et al., 2007 , 2021 ; hereafter “resistant” popu-
ations). While resistance to spinosad is likely polygenic, it
ight include variation in target-site proteins, though the
agnitude of evolved resistance in this study is modest com-
ared to what can be observed in agricultural settings ( Gress
 Zalom, 2019 ). 

verwintering experimental design 

t the end of the growing season, we collected eggs from
ight outdoor control and five outdoor resistant popula-
ions, reared flies indoors under common garden conditions
or two generations, and conducted fall phenotypic assays
 Figure 1 ). From these common garden-reared populations,
e collected approximately 2,000 adult flies per population

or the overwintering experiment. 
The orchard experiences a relatively mild temperate win-

er typical of the western Pacific Northwest, USA, but it still
resents challenging conditions for D. melanogaster includ-

ng occasional subfreezing air temperatures ( Figure S1 ). To
rovide a favorable environment, we used 5-L clear plastic
ontainers with a small, screened opening to allow aeration
nd added layers of hay pellets, ash wood chips, and cot-
on for insulation. We then transferred flies from each inde-
endent population and treatment type into an overwinter-

ng container and then placed the overwintering flies into an
utdoor rearing cage. After 5 weeks in the outdoor cage, we
ransferred the flies to a greenhouse and then an indoor in-
ubator to simulate a spring-like phenology cue in both tem-
erature and photoperiod. Following the overwintering and
pring acclimation period, we expanded post-overwintering
ies for two generations and began our phenotyping trials
see Figure 1 and supplemental material for full details and
iming of the experimental design). 

Experimental constraints influenced aspects of the design,
ncluding use of containers, relatively brief overwintering pe-
iod, and a lack of thermal refugia. While these choices do
mpact realism, they were largely made to balance severity
f the overall winter environment populations experienced
nd the necessity of containing individuals in a way that
acilitated collection following overwintering. There is ev-
dence that D. melanogaster changes dietary preference in
all to polyunsaturated fats to enhance overwinter survival
 Brankatschk et al., 2018 ), but our use of consistent diet pre-
luded any change. Regardless of design decisions, fly pop-
lations still experienced strong selection from temperature
nd photoperiodic effects consistent with winter in a high-
atitude environment. 

henotypic assays 

o assess temporal evolutionary responses during the grow-
ng season, eggs were collected from each replicate meso-
osm in density-controlled 200-ml bottles at regular inter-
als (August, September, and October) and reared in com-
on garden conditions as described earlier. The following
henotypes were assayed per replicate mesocosm: (1) Insec-
icide resistance measured as survivorship to adulthood on
.0375 μg L−1 concentration spinosad: the proportion of
ggs (30 eggs per vial) that survived to adulthood in three
eplicate vials; (2) fecundity: the total eggs laid by five fe-
ales over 3 days, measured in each of three replicate bot-

les, and scored following Gabidulin & Rudman (2025) ; (3)
tarvation tolerance: the time to starvation for three repli-
ate vials containing 10 males each on agar-only media; and
4) adult body size: measured as the average dry mass of
hree pools of five females, dried at 55 ◦C for 24 hr. We re-
eated these phenotypic assays for the post-overwintering
eriod but also included a fifth measure: chill coma recovery
ime (CCRT), a static measure of cold tolerance widely used
n assessing low temperature responses in D. melanogaster
 Gibert & Huey, 2001 ). We immersed 15 female flies in three
eplicates per cage in an ice water bath to induce chill coma
t 0◦ C for 2 hr following Macdonald et al. (2004) and Rako
nd Hoffman (2006) . We manually scored recovery at 20 ◦C
s the time to the minute when flies were able to right them-
elves. 

tatistical analyses 

o test adaptation across winter, we compared phenotypic
easures from the populations collected in October (from
ere on “fall”) and following the overwintering period (from
ere on “post-overwintering”). We modeled each pheno-
ypic measure as the response variable, time point as our
xed-effect predictor variable, and considered cage (i.e., in-
ividual population) as a random effect. To assess a poten-
ial trade-off in resistance, we tested for differences in sur-
ival and evolutionary divergence in traits across time points
etween outdoor-reared resistant and control populations.
ere, each phenotypic measure was the response variable,

ime point and population type were treated as fixed ef-
ects along with their interaction, and cage was treated as
 random effect. Since CCRT was only measured in post-
verwintering populations, we tested cold tolerance between
verwintered control and resistant populations in a model
ith population type as the predictor variable and cage as a

andom effect. 
To model each phenotypic measure for each question,
e used generalized linear mixed-effects models constructed
ith the glmmTMB function from the glmmTMB package

 Brooks et al., 2017 ; see supplemental material for details
n each model). Model diagnostics were conducted using
he simulateResiduals and testDispersion functions from the
HARMa package ( Hartig & Lohse, 2022 ). Our model

https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
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Figure 1. Timeline of the overwintering experimental design. At the end of the growing season, we collected approximately 800 eggs per cage from 

eight outdoor control and five outdoor resistant populations. We then reared flies indoors under common garden conditions for two generations and 
then conducted phenotyping for the fall time point. From this same generation of flies, we collected approximately 2,0 0 0 adults per population and 
placed them in overwintering containers with a non-spinosad-treated food resource held within a large 8-m3 outdoor rearing cage. After 5 weeks in 
the outdoor overwintering trial, we transferred the flies to a greenhouse and then an indoor incubator to simulate spring-like phenology cues in both 
temperature and photoperiod and to encourage reproduction (see Table S1 for rearing conditions). During the overwintering and spring, four populations 
(three resistant and one control) were extirpated, leaving a final sample size of t wo resist ant and seven control populations. We then collected 800 eggs 
from these overwintered flies and reared them under common garden conditions. We expanded these post-overwintering flies for two generations at a 
standard low density (1,500 eggs/300 ml of media), and 3–5 days after eclosion, we conducted phenotyping assays of fecundity, body size, cold 
tolerance, insecticide resistance, and starvation tolerance (see main text and Table S2 for details). 
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contrasting control and resistant populations was unable to 

meet assumptions of homoscedasticity, and efforts to cor- 
rect for this did not improve model fits. We opted to retain 

original model designs but deemphasized the focus on sig- 
nificance relative to effect size. To do so, we prioritized ef- 
fect size interpretation in the results but still report p- values 
from significance tests for completeness. We determined sig- 
nificance of the predictors using log-likelihood ratio tests in 

the Anova function with the type = “III” argument from the 
car package ( Fox & Weisberg, 2019 ) and calculated effect 
sizes as Hedges’ g using the hedges_g function from the ef- 
fectsize package ( Ben-Shachar et al., 2020 ). All analyses were 
conducted in R version 4.3.3 ( R Core Team, 2024 ). 

Results 

Field survival of overwintering flies 

All populations experienced severe mortality of > 98% from 

a starting population of 2,000 adult flies ( Figure 2 ), with 

1.67% of control and 0.62% of resistant flies surviving the 
overwinter trial. Overall, 60% of resistant and 12.5% of 
control populations went extinct during the overwintering 
period and there was a non-significant trend of population 

type on survival ( χ2 = 5.35, p = 0.0689). 

Adaptation across winter 

We found evidence for parallel temporal evolution in most 
phenotypes in control populations. Compared to fall pop- 
lations, post-overwintering populations exhibited smaller 
ry mass ( Figure 3A ; estimate = −0.398, SE = ±0.0606;
2 = 43.2, p < 0.0001), greater fecundity ( Figure 3B ; es-

imate = 0.515, SE = ±0.0543; χ2 = 136.7, p < 0.0001),
nd decreased spinosad resistance ( Figure 3D ; estimate =
24.9, SE = ±2.08; χ2 = 174.7, p < 0.0001). There was
o difference in starvation tolerance between fall and post- 
verwintering populations ( Figure 3C ; estimate = 3.57; SE
 ±2.85; χ2 = 1.56, p = 0.212). 

otential for trade-offs between winter conditions 

nd insecticide resistance 

o test for trade-offs between overwintering selection and 

nsecticide resistance, we compared phenotypic perfor- 
ance in fitness-associated traits between fall and post- 
verwintering control and resistant populations. Extinction,
articularly the high proportion observed in resistant popu- 

ations, reduced our statistical power for this contrast. Given 

his unbalanced contrast and overlapping phenotypic distri- 
utions, we interpret the results with the effect size differ- 
nce between population types ( Hedges’ g : control minus re-
istant; with 95% confidence intervals) at both time points.
e report these values to show the magnitude of the differ-

nces in groups but note that biological inference is limited 

ue to these constraints. For completeness, we also report 
he model outputs of predictors along with associated test 
tatistics and p- values ( Tables S3 and S4 ). 

https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
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Figure 2. Population counts of flies before and after the overwintering period. The population count on the y axis is on a “pseudo” natural log scale that 
can accommodate the zero values that indicate population mort alit y. Large points show the mean number of surviving flies per population type ± 1 SE 
with colors corresponding to each population type; note: SE bars for the founder cages are within the size of the point). Smaller points jittered behind the 
means show the average number of flies per replicate cage, while lines connecting each point show the decline in population size across all replicates. 

Figure 3. Phenotypic measures of outdoor control populations and outdoor resistant populations of D. melanogaster measured in the fall and following 
the overwintering experiment. Large points show the mean trait value of each population type ± 1 SE . Smaller points jittered behind the means show 

raw data values for each independent population’s phenotypic measure. (A) Average dry mass in milligrams. (B) Average fecundity across a 3-day assay. 
(C) Starvation tolerance measured as average time to mort alit y. (D) Spinosad resistance measured as the percent egg-to-adult survival on insecticide 
media. Note: In panel A, raw data points fall within the size of the post-overwintering resistant mean point. 
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We found that for both body size and fecundity, the 
phenotypic difference between control and resistant pop- 
ulations increased after overwintering. Specifically, control 
populations showed a greater reduction in dry mass and 

a greater increase in fecundity relative to resistant pop- 
ulations (dry mass: Figure 3A ; control minus resistant 
Hedges’ g fall = −0.78 [ −1.49, −0.05], post-overwintering 
= −1.05 [ −1.97, −0.12]; fecundity: Figure 3B ; control mi- 
nus resistant Hedges’ g fall = 0.41 [0.04, 0.078], post- 
overwintering = 1.42 [0.85, 1.98]). To directly test for a neg- 
ative correlation between winter conditions and spinosad 

resistance, we compared egg-to-adult survival on spinosad 

for both population types between time points. We found 

that the magnitude of greater survival for resistant over 
control populations declined in post-overwintering popula- 
tions ( Figure 3D ; control minus resistant Hedges’ g fall = 

−3.52 [ −4.10, −2.94], post-overwinter = −1.90 [ −2.30,
−1.49]). We did not find any differences in starvation toler- 
ance ( Figure 3C ; Table S3 ; control minus resistant Hedges’ 
g fall = −0.29 [ −0.99, 0.41]; overwinter = −0.37 [ −1.25,
0.52]) nor were there differences in CCRT between pop- 
ulation types following the winter period ( Figure S2 and 

Table S4 ; control minus resistant Hedges’ g post-overwinter 
= −0.42 [ −0.87, 0.04]). 

Discussion 

Winter can lead to dramatic declines in temperate insect pop- 
ulations, and the mechanisms that allow population persis- 
tence, including rapid adaptation, are poorly understood.
Additionally, it is important to understand how insecticide- 
resistant populations respond to winter selection and if sur- 
vival negatively covaries with resistance. From overwintered 

D. melanogaster in outdoor mesocosms, we detected evi- 
dence for adaptation in multiple phenotypic traits across 
the winter period, and a putative trade-off between the evo- 
lution of insecticide resistance and winter survival. These 
findings demonstrate that winter conditions can pose strong 
selective pressures and suggest that this selection may act 
against spinosad-resistant genotypes. Our findings have im- 
plications for insecticide use in pest management, impacts to 

non-target species, and overwintering evolution in a chang- 
ing climate. 

Adaptation across winter 

In the outdoor-reared control populations, there was re- 
peated evolution of multiple traits but not always in the pre- 
dicted direction. From both insect thermal physiology and 

field data of Drosophila ( Chown & Nicolson, 2004 ; James 
et al., 1997 ), we expected that post-overwintering popu- 
lations would evolve larger body size and reduced fecun- 
dity when compared to fall populations, but instead the re- 
verse was true. One explanation could be that many post- 
overwintering Drosophila females can carry male gametes 
within their spermatheca from fall matings ( Boulétreau- 
merle & Fouillet, 2002 ; Collet & Jarman, 2001 ). Previous 
work suggests that fall populations are shaped by several 
generations of selection during the summer and early fall,
while spring populations reflect selection across the winter 
( Behrman et al., 2015 ; Machado et al., 2021 ). Thus, females 
who successfully overwinter could produce maladapted off- 
spring ( Collet & Jarman, 2001 ). 
Alternatively, body size and fecundity could respond in 

 counter-gradient fashion to the winter period. Larger 
ody size can covary with lower temperature (i.e., Partridge 
 Coyne, 1997 ; Partridge et al., 1994 ) and fecundity 

an trade off with stress tolerance and diapause inci- 
ence, a pattern found in D. melanogaster across latitu- 
inal gradients ( Angilletta, 2009 ; Denlinger & Lee, 2010 ; 
chmidt & Conde, 2006 ). However, reverse clines have 
een documented in nearly equal numbers in arthropods 
 Blanckenhorn & Demont, 2004 ; reviewed in Shelomi,
012 ). In a counter-gradient scenario, overwintering selec- 
ion in high-latitude D. melanogaster might favor traits 
uch as greater fecundity or a rapid change into and out
f reproductive diapause ( Schmidt & Paaby, 2008 ) as this
ould allow populations to jumpstart and access resources 
ore quickly when spring conditions become favorable 

 Bachmann et al., 2020 ; Conover et al., 2009 ). 

otential costs for overwintering-resistant 
opulations 

he evolution of resistance during the growing season was 
ssociated with reduced overwinter performance that is sug- 
estive of a trade-off. First, a greater number of resistant fly
opulations went extinct across winter relative to control 
opulations. Second, the difference in survival on spinosad 

etween resistant and control populations decreased from 

all to post-overwintering when exposed to spinosad, sug- 
esting that resistant flies that survived the winter might 
ave reduced resistance. In our study, we likely observed 

olygenic resistance adaptation, but target-site-mediated re- 
istance could have unique pleiotropic effects on fitness in- 
luding greater oxidative damage ( Weber et al., 2012 ), de-
reased longevity, altered lipid environments, and vision loss 
 Martelli et al., 2022 ; Perry et al., 2015 ). These detrimen-
al, sublethal effects of resistance could negatively interact 
ith low temperature stress of overwintering, leading to 

he greater mortality we observed ( ffrench-constant & Bass,
017 ). While these patterns are consistent with costs of re-
istance, the small number of surviving resistant populations 
 n = 2) limits our statistical power and precludes strong in-
erences. We further note that the observed decline in re-
istance following overwintering could also reflect tempo- 
al variation in assay conditions rather than evolutionary 
hange ( Gray et al., 2025 ; Stone et al., 2020 ) and so we in-
erpret these patterns cautiously. 

Surprisingly, we did not find the expected differences in 

old and starvation tolerance between resistant and control 
opulations as drivers of lower overwintering survival. One 
ossibility is that our measure of cold tolerance (CCRT) 
id not fully capture variation in low temperature perfor- 
ance ( Andersen et al., 2015 ; Garcia et al., 2020 ). Although

educed survival in resistant populations might have been 

riven by variation in membrane fluidity ( Brankatschk et al.,
018 ), since this is a factor in CCRT ( Teets et al., 2023 ) that
as consistent between population types, we think this is less

ikely. We interpret these phenotypic results carefully, how- 
ver, as these findings might be due to survivorship bias and
he reduced sample size for overwintered resistant popula- 
ions limited the power to detect trait differences. 

The genomic architecture of adaptation to seasonal vari- 
tion has been well-studied in D. melanogaster , with sev-
ral field studies and experiments demonstrating a largely 

https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf205#supplementary-data
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olygenic basis of rapid adaptation ( Bergland et al., 2014 ;
achado et al., 2021 ; Rudman et al., 2022 ). Future work

etermining the genomic basis of adaptation to overwinter-
ng, including the prominence of structural variants (many
osmopolitan inversions were present in the founder popu-
ation used for this experiment; Table S5 ; Machado et al.,
021 ; Nunez et al., 2024 ), could elucidate any fluctuating
election associated with temporal variation and insecticide
xposure. 

nteractions and implications of overwintering, 
esistance, and pest management 

verall, there is little known about interactions between in-
ecticide resistance and overwintering insect biology, and the
vidence to date is mixed. In the Colorado potato beetle
 Leptinotarsa decemlineata , Say 1824), a major agricultural
est, resistant populations have shown stimulated invest-
ent in fat body tissue that increase metabolic fuel and in-
erit epigenetic effects that elicit general stress responses that
ncrease overwintering success ( Brevik et al., 2018 ; Lehmann
t al., 2014 ; Sinclair, Sinclair, 2015 ). In other studies, how-
ver, resistant beetles have exhibited lower overwintering
urvival due to maladaptive behavioral responses ( Ferro et
l., 1999 ; Piiroinen et al., 2013 ). Antagonistic responses be-
ween winter stress and insecticide resistance have been ob-
erved in insecticide-resistant green peach aphids ( Myzus
ersicae , Sulzer 1776) and northern house mosquitos ( Culex
ipiens , Linnaeus 1758), which showed lower survival over-
inter and differential success in finding overwintering refu-
ia, respectively ( Bourguet et al., 2004 ; reviewed in Kliot
 Ghanim, 2012 ). Given the limited and mixed evidence

mong insect taxa, more research with population-level
eplication is needed to test whether negative correlations
etween winter survival and insecticide resistance impact
opulation dynamics of pests. 
Trade-offs between overwintering and insecticide resis-

ance have important implications for both rapid adaptation
nd population dynamics under climate change. If resistance
volution is strongly temperature dependent, climate warm-
ng could substantially alter the dynamics of resistance evo-
ution ( Easterling et al., 2000 ; IPCC, 2023 ; Williams et al.,
015 ). One area of concern is that relaxed selection from
inter could lead to greater population-level resistance and

ange expansions of overwintering pest populations. Indeed,
ith milder winter conditions, resistant pests have expanded

nto higher latitudes including the diamondback moth ( Ma
t al., 2021 ), multiple tick species ( Molaei et al., 2022 ), and
olorado potato beetle ( Piiroinen et al., 2013 ). Given that
inter climate change is also associated with greater vari-

bility and population decline ( Sinclair et al., 2013 ; Williams
t al., 2015 ), our findings underscore the importance of mon-
toring and managing resistance in a rapidly changing world.

onclusion 

n this study, we add important evolutionary context for
he well-studied ecology and physiology of overwintering
ctotherms. Notably for D. melanogaster , adaptation lead-
ng to population persistence (and maintenance of genetic
ariation) overwinter seems to be critical for the “spring
eset” where greater fecundity can allow rapid population
rowth and recolonization of resources at the start of the
ext growing season ( Behrman et al., 2015 ; Machado et al.,
021 ). That winter led to greater mortality in resistant pop-
lations demonstrates potential costs to spinosad-resistant
ies in their ability to make this same reset. More broadly,
his work has implications for understanding seasonal de-
ographics of important agricultural pollinators, manage-
ent of pest species, and rapid adaptation of ectotherms in

emperate climates. 
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